WWTP RENOVATION AND EXPANSION

Engineering Study – Preliminary Results November 15, 2018

SAN MIGUEL CSD WASTEWATER SYSTEM

737 Connections

Population Served: 2700

EXISTING WWTP CONFIGURATION

EXISTING PERMIT REQUIREMENTS

•	Permitted Treatment Capacity, MGD	0.2 (max. month)	
	Effluent Limitations:	<u>Avg. last 6 samples</u>	<u>Maximum</u>
	TDS, mg/L	825	900
	Chloride, mg/L	180	200
	Sulfate, mg/L	175	200
	Sodium, mg/L	150	170

• The treatment ponds must maintain a minimum 2.0 feet freeboard at all times and must maintain dissolved oxygen of 1.0 mg/L minimum at all times.

- Effluent pH shall range between 6.5 and 8.4 at all times.
- Discharge shall not cause nitrate concentrations in downgradient GW to exceed 5 mg/L (as N)
- Discharge shall not cause "significant" increase in TDS.

 Under the current WDRs, the SMCSD is not required to sample influent or effluent organic waste strength parameters (total suspended solids (TSS) or biochemical oxygen demand (BOD₅)). However, the District must submit quarterly monitoring reports, and submit an annual report summarizing the past year's effluent and disposal area monitoring.

WWTP HISTORIC FLOW SUMMARY

AVG. Daily Flows

DAILY FLOW PATTERN

Flow Monitoring Data

Collection System Flow Patterns

FUTURE EFFLUENT QUALITY NON-TITLE 22

"30/30/10"

Reduce Salt Loading to GW Basin

Constituent	Units	Current	Limit	Potential Future Limit
		Average of the	Maximum	
		last 6 samples		
TDS	mg/L	825	900	Same as Current
Chloride	mg/L	180	200	Same as Current
Sulfate	mg/L	175	200	Same as Current
Sodium	mg/L	150	170	Same as Current
Dissolved Oxygen	mg/L	No less than 1.0) mg/L in all	Same as Current
		lagoons at a	iny time	
рН	pH units	6.5-8	.4	Same as Current
5-Day Biological Oxygen	mg/L	None	e	30
Demand (BOD₅)				
Total Suspended Solids (TSS)	mg/L	None	e	30
Total Nitrogen, as N (TN)	mg/L	None	5	10

FUTURE EFFLUENT QUALITY TITLE 22

Parameters	BOD5	TSS	TDS	Total Nitrogen (as N)	Dissolved Oxygen	рН	Sulfate	Sodium	Filtration Required	Disinfection Required
units	mg/L	mg/L	mg/L	mg/L	mg/L		mg/L	mg/L	Y/N	Y/N
Expected Future Effluent Limits	30	30	825	10	1.0 Minimum	6.5-8.4	175-200	150-170	Ν	Ν
Agricultural supply for Vineyard	No limit	No limit	450-750	5-10	No limit	6.5-8.4	<150	< 125	Ν	Y
Title 22: Disinfected Tertiary Recycled Water	Per Permit Requirement	Per Permit Requirement	Per Permit Requirement	Per Permit Requirement	Per Permit Requirement	Per Permit Requirement	Per Permit Requirement	Per Permit Requirement	Y	Y

FUTURE PROJECTED FLOWS

Flow Condition	Peaking	Existing Flow	Projected Flow (mgd)				
Flow Condition	Factor	(mgd)	2023	2028	2035	2050	
Average Daily Flow (ADF)		0.170	0.195	0.210	0.255	0.470	
Maximum Day Dry Weather Flow (MDDWF)	1.25	0.213	0.244	0.263	0.319	<mark>0.588</mark>	
Maximum Day Wet Weather Flow (MDWWF)	1.5	0.255	0.293	0.315	0.383	0.705	
Peak Hour Wet Weather Flow (PHWWF)	3.5	0.595	0.683	0.735	0.893	1.645	
Estimated Population Served		2700	3000	3350	3700	6300	
Estimated Number of sewer connection		765	850	900	1050	1800	
Annual Discharge (AC-FT)		190	220	240	290	530	
Annual Discharge (AC-FT) w/ Gallo Wastewater		230	260	280	330	570	

¹ Projected ADF, population increase, and sewer connections are based on SMCSD Water & Wastewater Masterplan Update, land Use in San Miguel (Monsoon Consultants, November 2017)

² It should be noted that the peaking factor for computing the MDWWF for future conditions was reduced from 4.0 to 3.5.

³ They system flow, up to 2035, is based upon a a sngle person 65 gpcd. From 2050, the average per person is increased to 75 because it's estimated that new developed area will use more water compared to the current socio economic community that is present today.

¹ The projected treatment system life expectancy is roughly 25-30 years.

BASIC WWTP OPERATIONS/PROCESSES

- Wastewater treatment is a process used to convert wastewater into an effluent that can be returned to the water cycle with minimum impact on the environment, or directly reused. The basic processes include the following:
 - Headworks
 - Influent Lift Station
 - Primary Treatment
 - Secondary Treatment
 - Bio-Solids Handling
 - Tertiary Treatment
 - Disinfection
 - Recycled Water Supply / Transmission

SMCSD WWTP EXPANSION/UPGRADE ALTERNATIVES EVALUATION CRITERIA

- Evaluate Processes Based On:
 - Utilization of Existing Facilities & Available Land
 - Identification of Scalable Processes To Permit Future Growth
 - Cost (Capital, O & M) vs Benefit
 - Compatibility with Existing Operations Staff Expertise
 - Mitigation of Odor Compounds
 - System Reliability
 - Quality of Effluent

WWTP EXPANSION / UPGRADE ALTERNATIVES

- COMMON IMPROVEMENTS
- TREATMENT ALTERNATIVES
 - Primary Processes
 - Secondary Treatment Processes
 - Tertiary Treatment Processes
 - Secondary-Tertiary Treatment Processes
 - Disinfection Treatment Processes
 - Bio-Solids Treatment and Disposal Processes
 - Title 22 Recycled Water Supply System

COMMON IMPROVEMENTS

COMMON IMPROVEMENTS

- Septage Receiving Station
- Headworks
 - Screening
 - Grit Removal
- Influent Pumping Station
- Office and Laboratory Facilities
- Additional Maintenance & Equipment Storage/Shop Facilities
- Environmentally Controlled Electrical & Controls Facilities
- Upgrade & Modernization of the Electrical, Controls & SCADA Systems
- Upgrade Power Generation Facilities

PRIMARY TREATMENT PROCESSES

PRIMARY PROCESSES

Flow Equalization

- Aerated
- Non–Aerated

SECONDARY TREATMENT PROCESSES

SECONDARY TREATMENT ALTERNATIVES

- Activated Sludge
- Activated Sludge w/ Membrane Bio-Reactor
- Trickling Filter
- > Trickling Filter w/ Membrane Bio-Reactor
- Membrane Bio-Reactor
- Rotating Biological Contactors
- Rotating Biological Contactors w/ Membrane Bio-Reactor
- Moving Bed Bio-Reactor w/ Membrane Bio-Reactor
- Integrated Fixed Film Activated Sludge
- Modified Aerated Ponds w/ Sequence Batch Reactor
- Modified Aerated Ponds w/ Anoxic/Oxic Tanks
- Renovated Aerated Ponds w/ Anoxic/Oxic Tanks
- Modified Aerated Pond w/ Membrane Bio-Reactor
- Modified Aerated Pond w/ Moving Bed Bio-Reactor
- Sequence Batch Reactor
- Modified Aerated Pond w/ Oxidation Ditch
- Oxidation Ditch
- Activated Sludge w/ Packed Bed Reactor and Membrane Bio-Reactor
- Renovated / Retrofitted Ponds

SECONDARY PROCESSES EVALUATION MATRIX

	Secondary Treatment - Suspended Growth Biological Treatment Systems										
Criteria	Weight(%)	Activated	l Sludge (AS)	Sequencing (g Batch Reactor SBR)	Oxida	tion Ditch	Retro-Fi	tted Aerated Ponds	Membrar (I	ie BioReactor MBR)
	_	Raw	Weighted	Raw	Weighted	Raw	Weighted	Raw	Weighted	Raw	Weighted
Capital Cost	20	2.5	0.5	4	0.8	3	0.6	5	1	3	0.6
Operating Cost	20	4	0.8	4	0.8	3	0.6	3	0.6	3	0.6
Odor Mitigation	5	4	0.2	4	0.2	4	0.2	3	0.15	4	0.2
Staff Requirement	5	3	0.15	3	0.15	4	0.2	3	0.15	3	0.15
Reliability	10	4	0.4	4	0.4	4	0.4	4	0.4	5	0.5
Construction Feasability	10	3	0.3	4	0.4	4	0.4	5	0.5	4	0.4
Ease of O&M	5	3	0.15	3	0.15	4	0.2	3	0.15	3	0.15
Adaptability/ Scalabiltiy	5	2	0.1	5	0.25	2	0.1	4	0.2	4	0.2
Effluent Quality	10	4	0.4	4	0.4	4	0.4	4	0.4	5	0.5
Footprint	10	3	0.3	5	0.5	2	0.2	5	0.5	4	0.4
Total	100		3.3		4.05		3.3		4.05		3.7
*Membrane BioRea	actor is a comb	pined secon	darv/tertiarv	treatment sv	stem						

SECONDARY ALTERNATIVE EVALUATION MATRIX CONT.

	Secondary Treatment - Fixed Film Biological Treatment System								
Criteria	Weighted(%)	Trickling Filters (TF)		Rotating Biological Contactors (RBC)		Moving Bed Biofilm Reactors (MBBR)		Integrated Fixed-Film Activated Sludge (IFAS)	
		Raw	Weighted	Raw	Weighted	Raw	Weighted	Raw	Weighted
Capital Cost	20	2.5	0.5	2.5	0.5	2	0.4	2	0.4
Operating Cost	20	3	0.6	3	0.6	2	0.4	2	0.4
Odor Mitigation	5	2.5	0.125	4	0.2	4	0.2	4	0.2
Staff Requirement	5	4	0.2	3	0.15	2.5	0.125	2.5	0.125
Reliability	10	3	0.3	3	0.3	4	0.4	4	0.4
Construction Feasability	10	4	0.4	3	0.3	4	0.4	3	0.3
Ease of O&M	5	2.5	0.125	3	0.15	3	0.15	2.5	0.125
Adaptability/ Scalabiltiy	5	3	0.15	2	0.1	4	0.2	3	0.15
Effluent Quality	10	3	0.3	3	0.3	4.5	0.45	5	0.5
Footprint	10	4	0.4	3	0.3	4	0.4	3	0.3
Total	100		3.1		2.9		3.125		2.9

TERTIARY TREATMENT PROCESSES

TERTIARY TREATMENT – FILTRATION PROCESSES

- Disk Filters
- Granular Media Filters
- Membrane Filters (microfiltration and ultrafiltration)

TERTIARY TREATMENT – FILTRATION EVALUATION MATRIX

	Tertiary Treatment - Filtration Treatment Systems								
Criteria	Weighted(%)	Disc	Filters	ilters Media Filters			Membrane Filters		
		Raw	Weighted	Raw	Weighted	Raw	Weighted		
Capital Cost	20	4	0.8	3	0.6	2	0.4		
Operating Cost	20	3	0.6	3	0.6	2	0.4		
Odor Mitigation	5	5	0.25	5	0.25	5	0.25		
Staff Requirement	5	4	0.2	4	0.2	3	0.15		
Reliability	10	3	0.3	3	0.3	4	0.4		
Construction Feasability	10	4	0.4	3	0.3	4	0.4		
Ease of O&M	5	4	0.2	4	0.2	3	0.15		
Adaptability/ Scalabiltiy	5	4	0.2	3	0.15	3	0.15		
Effluent Quality	10	4	0.4	4	0.4	5	0.5		
Footprint	10	4	0.4	3	0.3	2.5	0.25		
Total	100		3.75		3.3		3.05		

HYBRID SECONDARY – TERTIARY TREATMENT PROCESSES

COMBINED SECONDARY/TERTIARY TREATMENT

Membrane Bio-Reactor

DISINFECTION PROCESSES

DISINFECTION PROCESS

- Chlorination/Dechlorination Basin
- UV Light

DISINFECTION PROCESSES EVALUATION MATRIX

Tert	Tertiary Treatment - Disinfection Treatment Systems									
Criteria	Weighted(%)	UV C	Disinfection	Chlorin	Chlorine Disinfection					
		Raw	Weighted	Raw	Weighted					
Capital Cost	20	3	0.6	3	0.6					
Operating Cost	20	2	0.4	3	0.6					
Odor Mitigation	5	5	0.25	4	0.2					
Staff Requirement	5	3	0.15	3	0.15					
Reliability	10	3	0.3	4	0.4					
Construction Feasability	10	4	0.4	3	0.3					
Ease of O&M	5	4	0.2	3	0.15					
Adaptability/ Scalabiltiy	5	4	0.2	3	0.15					
Effluent Quality	10	4	0.4	3	0.3					
Footprint	10	4	0.4	3	0.3					
Total	100		3.3		3.15					

SLUDGE MANAGEMENT PROCESSES

BIOSOLIDS MANAGEMENT PROCESSES

- Sludge Drying Bed
- Dewatering Container Filters (Sludge Box)
- Screw Press

BIOSOLIDS MANAGEMENT PROCESSES EVALUATION MATRIX

Tertiary Treatment - Bio-Solids Handling Systems								
Criteria	Weighted(%)	Sludge	Sludge Drying Bed		Container Filters Ige Box)	Screw Press		
		Raw	Weighted	Raw	Weighted	Raw	Weighted	
Capital Cost	20	5	1	4	0.8	3	0.6	
Operating Cost	20	3	0.6	4	0.8	4	0.8	
Odor Mitigation	5	2	0.1	4	0.2	3	0.15	
Staff Requirement	5	2	0.1	4	0.2	4	0.2	
Reliability	10	3	0.3	4	0.4	4	0.4	
Construction Feasability	10	5	0.5	5	0.5	5	0.5	
Ease of O&M	5	3	0.15	4	0.2	4	0.2	
Adaptability/ Scalabiltiy	5	2	0.1	4	0.2	4	0.2	
Effluent Quality	10	4	0.4	4	0.4	4	0.4	
Footprint	10	3	0.3	4	0.4	5	0.5	
Total	100		3.55		4.1		3.95	

CASE STUDIES

NIPOMO WASTEWATER TREATMENT FACILITY

- Permitted Capacity of 0.9 MGD, Operating at 0.6 MGD
- The current plant included 4 aerated ponds, 2 sludge drying beds, and 8 percolation basins.
- Projected Effluent and Flow limits Would Be Reached Soon
- Four Treatment Processes Were Evaluated for the WWTF Upgrade:
 - A. ADDITIONAL AERATED PONDS
 - B. BIOLAC WAVE OXIDATION SYSTEM
 - C. OXIDATION DITCH
 - D. CONVENTIONAL ACTIVATED SLUDGE
- Selected Treatment Option was RETROFITTED POND SYSTEM

KING CITY WASTEWATER TREATMENT FACILITY

- Permitted Capacity of 1.2 MGD, Operating at 0.85 MGD
- The current plant included head works, seven aerated ponds, an effluent disposal pump station and force man, and six spray irrigation fields for disposal of treated effluent. Projected effluent and flow limits would be reached soon
- Initially, multiple options were considered:
- 1.) Activated Sludge

4.) Denitrification Filters

5.) Additional Ponds

7.) Oxidation Ditch

8.) MBR

- 2.) Trickling Filter (1-stage)
- 3.) Nitrifying Trickling Filter
- Etinger (MLE) Process

- 6.) Conventional Activated Sludge (CAS) W/ Modified Ludzach-
- Based on BOD removal, Ammonia removal, Total Nitrogen removal, reliability and recommendations made by Carollo, the 3 investigated further included:
- A. Conventional Activated Sludge (CAS) W/ Modified Ludzach-Etinger (MLE) process
- **B.** Oxidation Ditch
- c. MBR
- > These three systems were evaluated based on a matrix that included performance, footprint, constructability, operation and maintenance requirements, economic factors, and safety. The highest score received was by **Oxidation Ditch**, which was selected as the alternative.

MORRO BAY WASTEWATER TREATMENT FACILITY

- Design ADF Of 1.5 MGD, Operating At 1.25 MGD
- The current plant included bar screens, aerated Grit Basin, 2 primary clarifiers, 2 trickling filters, solids contact chamber, secondary clarifier, chlroine contact basin, and effluent discharged to the ocean. The systems sludge was sent to a digester.
- Multiple treatment Processes were looked at but two were evaluated for the WWTF upgrade:
 - A. SBR
 - **B.** MBR
 - C. OXIDATION DITCH

Selected treatment option was MBR System

WWTP EXPANSION / UPGRADE PREFERRED ALTERNATIVE CONFIGURATIONS

Retrofitted Existing Pond System Sequencing Batch Reactor (SBR) Membrane Bio-Reactor (MBR)

RETROFITTED EXISTING POND SYSTEM (HYBRID SBR)

Summary of Configuration

- Headworks
- Influent Lift Station
- Aerated Flow Equalization
- Hybrid SBR Pond System
- Tertiary Filtration
- UV Disinfection
- Biosolids Handling
- Recycled Water System

RETROFITTED POND SYSTEM (HYBRID SBR)

EXISTING HYBRID SBR POND SYSTEMS

NAME OF FACILITY	LOCATION (CITY, STATE)	ADF
Lexington WWTP	Lexington, Tennessee	1.1 MGD
City of Rupert Wastewater Treatment Plant	Rupert, Idaho	2.6-3.0 MGD
Mountain Green Sewage District Plant	Mt. Green, Utah	0.2-0.6 MGD
Grantsville WWTP	Grantsville, Utah	1.5 MGD
Brakebush Brothers Inc., Poultry	Westfield, Wisconsin	0.1 MGD
F&A Dairy Products, Inc.	Dresser, Wisconsin	0.1 MGD
Miner WWTP	Miner, Missouri	0.3 MGD

SEQUENCING BATCH REACTOR

Summary of Configuration

- Headworks
- Influent Lift Stations
- Aerated Flow Equalization
- SBR Unit
- Tertiary Filtration
- UV Disinfection
- Biosolids Handling
- Recycled Water System

SEQUENCING BATCH REACTOR SYSTEM

OMNIPAC® Field - Erected SBR system layout

EXISTING SEQUENCING BATCH REACTOR SYSTEMS

NAME OF FACILITY	LOCATION (CITY, STATE)	ADF
Siletz WWTP	Siletz, Oregon	90-200,000
Mingus WWTP	Cottonwood, Arizona	1,000,000
Sometron WWTP	Somerton, Arizona	800,000
Cave Creek WWTP	Cave Creek, Arizona	300,000
Pala Casino Spa & Resport WWTP	Pala , California	600,000
Coquille Sewage TP	Coquille, Oregon	6.12 MGD
Creswell WTF	Creswell, Oregon	800,000
Sun Lakes WWTP	Sun Lakes, Arizona	2.4 MGD
Sundance Water Reclamation	Ruckovo Arizona	
Facility	Buckeye, Alizona	1.2 1000
Mountain House Water	(noar Tracy) California	2 MGD
Reclamation Facility	(near fracy), camorna	
Cypress Ridge WWTP	Arroyo Grande, California	0.14 MGD
Calera Creek WRP	Pacifica, California	3.30 MGD
Santa Rosa Rancheria	Lemoore, California	0.55 MGD
Table Mountain Rancheria	Friant, California	0.5 MGD

MEMBRANE BIO-REACTOR

Summary of Configuration

- Headworks
- Influent Lift Station
- Non-Aerated Flow Equalization
- Micro Screening
- MBR Unit
- UV Disinfection
- Biosolids Handling
- Recycled Water System

EXISTING MEMBRANE BIO-REACTOR SYSTEMS

NAME OF FACILITY	LOCATION (CITY,STATE)	ADF
Quechan Paradise Casino	Winterhaven, Ca	600,000 GPD
Double Tree Paper Mill Facility	Gila Bend, Az	300,000 GPD
Corona WWTP	Carona, Ca	3.8-8.5 MGD
Tri-City water Pollution Control Plant (WPCP)	Oregon City, Clackamas County, Oregon	4 MGD
San Luis Obispo WRRF MBR upgrade	San Luis Obispo, CA	3 MGD
Ironhouse Sanitary District WWTP	Countra Costa County, CA	8.6 MGD
Redlands WWTP	San Bernardino County, CA	6.6 MGD
Santa Paula WWTP	Ventura County, CA	4.2 MGD
American Canyon WWTP	Napa County, CA	3.75 MGD
Red Hawk Casino WWTP	CA	0.3 MGD
*Morro Bay WWTP(in progress, deciding on MBR Manufacturer)	Morro Bay, CA	1.1 MGD

SHORT-LIST EVALUATION MATRIX

Recommended Treatment Systems							
Criteria	Weight(%)	Retro-Fitted Aerated Ponds		Sequencing Batch Reactor (SBR)		Membrane BioReactor	
		Raw	Weighted	Raw	Weighted	Raw	Weighted
Capital Cost	20	5	1	4	0.8	3	0.6
Operating Cost	20	3	0.6	4	0.8	3	0.6
Odor Mitigation	5	3	0.15	4	0.2	4	0.2
Staff Requirement	5	3	0.15	3	0.15	3	0.15
Reliability	10	4	0.4	4	0.4	5	0.5
Construction Feasability	10	5	0.5	4	0.4	4	0.4
Ease of O&M	5	3	0.15	3	0.15	3	0.15
Adaptability/ Scalabiltiy	5	4	0.2	5	0.25	4	0.2
Effluent Quality	10	4	0.4	4	0.4	5	0.5
Footprint	10	5	0.5	5	0.5	4	0.4
Total	100		4.05		4.05		3.7

SALT MANAGEMENT STRATEGY

SODIUM TRENDS IN EFFLUENT

CHLORIDE TRENDS IN EFFLUENT

SALT REDUCTION THROUGH BLENDING

- RECYCLED WATER THAT MEETS TITLE 22 DISINFECTED SECONDARY STANDARDS CAN BE USED FOR VINEYARD DRIP IRRIGATION SYSTEMS
- MIXING RECYCLED WATER WITH WELL WATER PRODUCED BY VINEYARDS WILL PRODUCE A IRRIGATION SUPPLY THAT IS SUITABLE FOR VINE HEALTH
- ELIMINATE THE PERCOLATION OF EFFLUENT WITH HIGH SALT CONCENTRATIONS INTO THE GROUNDWATER AQUIFER
- DISTRIBUTE THE PRODUCED MASS OF SALT OVER A SIGNIFICANT AREA (MINIMAL ADVERSE IMPACT TO THE GROUNDWATER BASIN)
- REDUCED PUMPING FROM NEARBY VINEYARD IRRIGATION WELLS
- POTENTIAL SIGNIFICANT LONG-TERM INCOME SOURCE FOR DISTRICT

RECYCLED WATER SUPPLY SYSTEM

Proposed SMCSD Title 22 Recycled Water Transmission Pipeline Aligment

PRELIMINARY WWTP EXPANSION / UPGRADE CAPITAL COST ESTIMATES

COMPARISON OF ESTIMATED CAPITAL COSTS

- RETROFITTED EXISTING POND SYSTEM \$4,360,000
- SEQUENCING BATCH REACTOR SYSTEM \$4,950,000
- MEMBRANE BIO-REACTOR SYSTEM \$5,950,000

ESTIMATED WWTP EXPANSION / UPGRADE ESTIMATE PER 2017 MASTER PLAN UPDATE – \$4,559,300

Note: Not included in each of these configurations cost estimates is the estimated cost of for a Recycled Water Storage / Pumping / Transmission System to Deliver Treated Effluent to Large Vineyards for Irrigation Purposes is \$2,380,000.

WHATS NEXT?

- Complete Engineering Report and Delivered to Board
- Initiate CEQA Process
- Meet with Water Board to Solicit Input and Direction
- Initiate District Operations Staff Diligence Investigations
- Selection of Final WWTP Expansion / Upgrade Configuration
- Submittal of Grant Funding Applications
- WWTP Expansion / Upgrade Design Development
- Initiate Permitting Process
- WWTP Expansion / Upgrade Construction Documentation
- Initiate Project Financing Activities
- Complete CEQA Process and Permitting
- Initiate Project Solicitation for Bids

Contract Award and Begin Construction